If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.4x^2+x+0.4=0
a = 0.4; b = 1; c = +0.4;
Δ = b2-4ac
Δ = 12-4·0.4·0.4
Δ = 0.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{0.36}}{2*0.4}=\frac{-1-\sqrt{0.36}}{0.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{0.36}}{2*0.4}=\frac{-1+\sqrt{0.36}}{0.8} $
| x+27=(-12) | | 2(x+1)/3=1 | | -28-(-3)=x/12 | | (18+16)/2=2x+9 | | 20+b=-20-3b | | c=75-3 | | a+(-7)=(-17) | | -5z=-7z+16 | | 6s+9(2161-s)=15693 | | a/4=-14+16 | | 16+15p=-7 | | 25.6=r+14.1 | | 19.6+7.3b=5.9b | | 4x+11=99 | | 16+15p=-74 | | 9s+14(1975-s)=25230 | | 5/3+11/6x+1/2x=7/3x+1+4/3x | | -18h-7=-19h | | 2x-37=61 | | 4x+2x+3x=45 | | -1-j=-19-4j | | y=$0.07+$19.0 | | 35-5x=-5 | | g+6/3=2 | | 20=4(2+x) | | -p=-p | | 6s+9(2161-s)=15,693 | | 3/4(8x-12)=-2x+11-2x | | 9f+2/4=5 | | 3.6n+1.22=-0.54+3.4n | | 7t+(-5)=16 | | 5k+1/6=11 |